Hawaii Cannabis logo

The State Department of Health have “seizures, including those characteristic of epilepsy, or severe and persistent muscle spasms, including those characteristic of multiple sclerosis or Crohn’s disease” on their list of “debilitating medical conditions” for which a licensed physician may certify a patient for the Hawaii State Medical Use of Marijuana Program.

Parents seeking treatment for their children must fill out this form in addition to following the regular application process.

Additional Cannabis Research & Cannabis Studies

Title: Highlights in the History of Epilepsy: The Last 200 Years (2014)

Abstract (see section 3.5. Complimentary Treatments for Epilepsy): The purpose of this study was to present the evolution of views on epilepsy as a disease and symptom during the 19th and the 20th century. A thorough study of texts, medical books, and reports along with a review of the available literature in PubMed was undertaken. The 19th century is marked by the works of the French medical school and of John Hughlings Jackson who set the research on epilepsy on a solid scientific basis. During the 20th century, the invention of EEG, the advance in neurosurgery, the discovery of antiepileptic drugs, and the delineation of underlying pathophysiological mechanisms, were the most significant advances in the field of research in epilepsy. Among the most prestigious physicians connected with epilepsy one can pinpoint the work of Henry Gastaut, Wilder Penfield, and Herbert Jasper. The most recent advances in the field of epilepsy include the development of advanced imaging techniques, the development of microsurgery, and the research on the connection between genetic factors and epileptic seizures.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158257/


 

 

Title: Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy (2015)

Abstract: OBJECTIVE: Oral cannabis extracts (OCEs) have been used in the treatment of epilepsy; however, no studies demonstrate clear efficacy. We report on a cohort of pediatric patients with epilepsy who were given OCE and followed in a single tertiary epilepsy center.
METHODS: A retrospective chart review of children and adolescents who were given OCE for treatment of their epilepsy was performed.
RESULTS: Seventy-five patients were identified of which 57% reported any improvement in seizure control and 33% reported a >50% reduction in seizures (responders). If the family had moved to CO for OCE treatment, the responder rate was 47% vs. 22% for children who already were in CO. The responder rate varied based on epilepsy syndrome: Dravet 23%, Doose 0%, and Lennox-Gastaut syndrome (LGS) 88.9%. The background EEG of the 8 responders where EEG data were available was not improved. Additional benefits reported included: improved behavior/alertness (33%), improved language (10%), and improved motor skills (10%). Adverse events (AEs) occurred in 44% of patients including increased seizures (13%) and somnolence/fatigue (12%). Rare adverse events included developmental regression, abnormal movements, status epilepticus requiring intubation, and death.
SIGNIFICANCE:
Our retrospective study of OCE use in pediatric patients with epilepsy demonstrates that some families reported patient improvement with treatment; however, we also found a variety of challenges and possible confounding factors in studying OCE retrospectively in an open-labeled fashion. We strongly support the need for controlled, blinded studies to evaluate the efficacy and safety of OCE for treatment of pediatric epilepsies using accurate seizure counts, formal neurocognitive assessments, as well as EEG as a biomarker. This study provides Class III evidence that OCE is well tolerated by children and adolescents with epilepsy.

Source/Full Texthttp://www.ncbi.nlm.nih.gov/pubmed/25845492


 

Title: Chronic administration of cannabidiol to healthy volunteers and epileptic patients. (1980)

Abstract: In phase 1 of the study, 3 mg/kg daily of cannabidiol (CBD) was given for 30 days to 8 health human volunteers. Another 8 volunteers received the same number of identical capsules containing glucose as placebo in a double-blind setting. Neurological and physical examinations, blood and urine analysis, ECG and EEG were performed at weekly intervals. In phase 2 of the study, 15 patients suffering from secondary generalized epilepsy with temporal focus were randomly divided into two groups. Each patient received, in a double-blind procedure, 200-300 mg daily of CBD or placebo. The drugs were administered for along as 4 1/2 months. Clinical and laboratory examinations, EEG and ECG were performed at 15- or 30-day intervals. Throughout the experiment the patients continued to take the antiepileptic drugs prescribed before the experiment, although these drugs no longer controlled the signs of the disease. All patients and volunteers tolerated CBD very well and no signs of toxicity or serious side effects were detected on examination. 4 of the 8 CBD subjects remained almost free of convulsive crises throughout the experiment and 3 other patients demonstrated partial improvement in their clinical condition. CBD was ineffective in 1 patient. The clinical condition of 7 placebo patients remained unchanged whereas the condition of 1 patient clearly improved. The potential use of CBD as an antiepileptic drug and its possible potentiating effect on other antiepileptic drugs are discussed.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pubmed/7413719


 

Title: Anticonvulsant nature of marihuana smoking. (1975)

Abstract: Marihuana smoking, in conjunction with therapeutic doses of phenobarbital and diphenylhydantoin, was apparently necessary for controlling seizures in one 24-year-old epileptic patient.

Source / Full Texthttp://www.ncbi.nlm.nih.gov/pubmed/808653


 

Title: Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? (2013)

Abstract: Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ9-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington’s disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ9-tetrahydrocannabinol, i.e. CB1 and CB2 receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB2 receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.

Source / Full Texthttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579248/


 

Title: Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy (2013)

Abstract: Severe childhood epilepsies are characterized by frequent seizures, neurodevelopmental delays and impaired quality of life. In these treatment-resistant epilepsies, families often seek alternative treatments. This survey explored the use of cannabidiol-enriched cannabis in children with treatment-resistant epilepsy. The survey was presented to parents belonging to a Facebook group dedicated to sharing information about the use of cannabidiol-enriched cannabis to treat their child’s seizures. Nineteen responses met the inclusion criteria for the study: a diagnosis of epilepsy and current use of cannabidiol-enriched cannabis. Thirteen children had Dravet syndrome, four had Doose syndrome, and one each had Lennox-Gastaut syndrome and idiopathic epilepsy. The average number of anti-epileptic drugs (AEDs) tried before using cannabidiol-enriched cannabis was 12. Sixteen (84%) of the 19 parents reported a reduction in their child’s seizure frequency while taking cannabidiol-enriched cannabis. Of these, two (11%) reported complete seizure freedom, eight (42%) reported a greater than 80% reduction in seizure frequency, and six (32%) reported a 25-60% seizure reduction. Other beneficial effects included increased alertness, better mood and improved sleep. Side effects included drowsiness and fatigue. Our survey shows that parents are using cannabidiol-enriched cannabis as a treatment for children with treatment-resistant epilepsy. Because of the increasing number of states that allow access to medical cannabis, its use will likely be a growing concern for the epilepsy community. Safety and tolerability data for cannabidiol-enriched cannabis use among children is not available. Objective measurements of a standardized preparation of pure cannabidiol are needed to determine whether it is safe, well tolerated and efficacious at controlling seizures in this difficult-to-treat pediatric population.

Source / Full Texthttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157067/

Also seehttp://epilepsyut.org/downloads/Jacobson&Porter.pdf


 

Title: Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo (2010)

Abstract: Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model, respectively. CBD (0.01–100 μM) effects were assessed in vitro using the Mg2+-free and 4-aminopyridine (4-AP) models of epileptiform activity in hippocampal brain slices via multielectrode array recordings. In the Mg2+-free model, CBD decreased epileptiform local field potential (LFP) burst amplitude [in CA1 and dentate gyrus (DG) regions] and burst duration (in all regions) and increased burst frequency (in all regions). In the 4-AP model, CBD decreased LFP burst amplitude (in CA1 only at 100 μM CBD), burst duration (in CA3 and DG), and burst frequency (in all regions). CBD (1, 10, and 100 mg/kg) effects were also examined in vivo using the pentylenetetrazole model of generalized seizures. CBD (100 mg/kg) exerted clear anticonvulsant effects with significant decreases in incidence of severe seizures and mortality compared with vehicle-treated animals. Finally, CBD acted with only low affinity at cannabinoid CB1 receptors and displayed no agonist activity in [35S]guanosine 5′-O-(3-thio)triphosphate assays in cortical membranes. These findings suggest that CBD acts, potentially in a CB1 receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819831/


 

Title: Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism (2013)

Abstract:
BACKGROUND AND PURPOSE
Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB1 receptors.

EXPERIMENTAL APPROACH
The anticonvulsant profiles of two CBDV BDSs (50–422 mg·kg−1) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB1 receptors was evaluated using displacement binding assays.

KEY RESULTS
CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg−1) and audiogenic seizure models (≥87 mg·kg−1), and suppressed pilocarpine-induced convulsions (≥100 mg·kg−1). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ9-tetrahydrocannabinol and Δ9-tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB1 cannabinoid receptors than purified CBDV.

CONCLUSIONS AND IMPLICATIONS
CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792005/


 

Title: Cannabidiol in Humans—The Quest for Therapeutic Targets (2012)

Abstract: Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC) were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies), schizophrenia and bipolar mania (four studies), social anxiety disorder (two studies), neuropathic and cancer pain (two studies), cancer anorexia (one study), Huntington’s disease (one study), insomnia (one study), and epilepsy (one study). Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d) may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763649/


 

Title: The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis (2000)

Abstract (see discussion in the source link re: Epilepsy): The therapeutic potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis, was explored in murine collagen-induced arthritis (CIA). CIA was elicited by immunizing DBA/1 mice with type II collagen (CII) in complete Freund’s adjuvant. The CII used was either bovine or murine, resulting in classical acute CIA or in chronic relapsing CIA, respectively. CBD was administered after onset of clinical symptoms, and in both models of arthritis the treatment effectively blocked progression of arthritis. CBD was equally effective when administered i.p. or orally. The dose dependency showed a bell-shaped curve, with an optimal effect at 5 mg/kg per day i.p. or 25 mg/kg per day orally. Clinical improvement was associated with protection of the joints against severe damage. Ex vivo, draining lymph node cells from CBD-treated mice showed a diminished CII-specific proliferation and IFN-γ production, as well as a decreased release of tumor necrosis factor by knee synovial cells. In vitro effects of CBD included a dose-dependent suppression of lymphocyte proliferation, both mitogen-stimulated and antigen-specific, and the blockade of the Zymosan-triggered reactive oxygen burst by peritoneal granulocytes. It also was found that CBD administration was capable of blocking the lipopolysaccharide-induced rise in serum tumor necrosis factor in C57/BL mice. Taken together, these data show that CBD, through its combined immunosuppressive and anti-inflammatory actions, has a potent anti-arthritic effect in CIA.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC16904/


 

Title: Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention (2013)

Abstract: Phytocannabinoids isolated from the cannabis plant have broad potential in medicine that has been well recognized for many centuries. It is presumed that these lipid soluble signaling molecules exert their effects in both the central and peripheral nervous system in large part through direct interaction with metabotropic cannabinoid receptors. These same receptors are also targeted by a variety of endogenous cannabinoids including 2-arachidonoyl glycerol and anandamide. Significant effort over the last decade has produced an enormous advance in our understanding of both the cellular and the synaptic physiology of endogenous lipid signaling systems. This increase in knowledge has left us better prepared to carefully evaluate the potential for both natural and synthetic cannabinoids in the treatment of a variety of neurological disorders. In the case of epilepsy, long standing interest in therapeutic approaches that target endogenous cannabinoid signaling systems are, for the most part, not well justified by available clinical data from human epileptics. Nevertheless, basic science experiments have clearly indicated a key role for endogenous cannabinoid signaling systems in moment to moment regulation of neuronal excitability. Further it has become clear that these systems can both alter and be altered by epileptiform activity in a wide range of in vitro and in vivo models of epilepsy. Collectively these observations suggest clear potential for effective therapeutic modulation of endogenous cannabinoid signaling systems in the treatment of human epilepsy, and in fact, further highlight key obstacles that would need to be addressed to reach that goal.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3332149/


 

 

Title: High dosage of cannabidiol (CBD) alleviates pentylenetetrazole-induced epilepsy in rats by exerting an anticonvulsive effect (2015)

Abstract: The study was designed to investigate the effect of various concentrations of cannabidiol (CBD) in rats with chronic epilepsy. The chronic epilepsy rat model was prepared by intraperitoneally injecting pentylenetetrazole to the rats pre-treated with CBD (10, 20 and 50 mg/kg) for 28 consecutive days. Behavioral measurements of convulsion following pentylenetetrazole treatment and morphological changes of the hippocampal neurons with hematoxylin and eosin staining were used to observe the epileptic behaviour. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein and inducible nitric oxide synthase (iNOS) in the hippocampus. The mRNA expression of N-methyl-D-aspartic acid (NMDA) receptor subunits (NR1 and NR2B) was detected by reverse transcription polymerase chain reaction. The results revealed a significant decrease in the daily average grade of epileptic seizures on treatment with CBD (50 mg/kg). The neuronal loss and astrocyte hyperplasia in the hippocampal area were also decreased. CBD treatment did not affect the expression of iNOS in the hippocampus; however, the expression of NR1 was decreased significantly. Thus, CBD administration inhibited the effect of pentylenetetrazole in rats, decreased the astrocytic hyperplasia, decreased neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA. Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537971/


 

Title: Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke (2010)

Abstract: Cannabis contains the psychoactive component delta9-tetrahydrocannabinol (delta9-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol. It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta9-THC also mediates psychological effects through the activation of the CB1 receptor in the central nervous system. In addition to the CB1 receptor agonists, cannabis also contains therapeutically active components which are CB1 receptor independent. Of the CB1 receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036658/


 

Title: Cannabidiol: Promise and Pitfalls (2014)

Abstract: Over the past few years, increasing public and political pressure has supported legalization of medical marijuana. One of the main thrusts in this effort has related to the treatment of refractory epilepsy—especially in children with Dravet syndrome—using cannabidiol (CBD). Despite initiatives in numerous states to at least legalize possession of CBD oil for treating epilepsy, little published evidence is available to prove or disprove the efficacy and safety of CBD in patients with epilepsy. This review highlights some of the basic science theory behind the use of CBD, summarizes published data on clinical use of CBD for epilepsy, and highlights issues related to the use of currently available CBD products.

Cannabidiol is the major nonpsychoactive component of Cannabis sativa. Over the centuries, a number of medicinal preparations derived from C. sativa have been employed for a variety of disorders, including gout, rheumatism, malaria, pain, and fever. These preparations were widely employed as analgesics by Western medical practitioners in the 19th century (1). More recently, there is clinical evidence suggesting efficacy in HIV-associated neuropathic pain, as well as spasms associated with multiple sclerosis (1).

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189631/


 

Title: Endocannabinoids in nervous system health and disease: the big picture in a nutshell (2012)

Abstract: The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481537/


 

Title: The adenosine kinase hypothesis of epileptogenesis (2008)

Abstract: Current therapies for epilepsy are largely symptomatic and do not affect the underlying mechanisms of disease progression, i.e. epileptogenesis. Given the large percentage of pharmacoresistant chronic epilepsies, novel approaches are needed to understand and modify the underlying pathogenetic mechanisms. Although different types of brain injury (e.g. status epilepticus, traumatic brain injury, stroke) can trigger epileptogenesis, astrogliosis appears to be a homotypic response and hallmark of epilepsy. Indeed, recent findings indicate that epilepsy might be a disease of astrocyte dysfunction. This review focuses on the inhibitory neuromodulator and endogenous anticonvulsant adenosine, which is largely regulated by astrocytes and its key metabolic enzyme adenosine kinase (ADK). Recent findings support the “ADK hypothesis of epileptogenesis”: (i) Mouse models of epileptogenesis suggest a sequence of events leading from initial downregulation of ADK and elevation of ambient adenosine as an acute protective response, to changes in astrocytic adenosine receptor expression, to astrocyte proliferation and hypertrophy (i.e. astrogliosis), to consequential overexpression of ADK, reduced adenosine and – finally – to spontaneous focal seizure activity restricted to regions of astrogliotic overexpression of ADK. (ii) Transgenic mice overexpressing ADK display increased sensitivity to brain injury and seizures. (iii) Inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. (iv) Intrahippocampal implants of stem cells engineered to lack ADK prevent epileptogenesis. Thus, ADK emerges both as a diagnostic marker to predict, as well as a prime therapeutic target to prevent, epileptogenesis.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278041/


 

Title: Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. (2015)

Abstract: There is a great need for safe and effective therapies for treatment of infantile spasms (IS) and Lennox-Gastaut syndrome (LGS). Based on anecdotal reports and limited experience in an open-label trial, cannabidiol (CBD) has received tremendous attention as a potential treatment for pediatric epilepsy, especially Dravet syndrome. However, there is scant evidence of specific utility for treatment of IS and LGS. We sought to document the experiences of children with IS and/or LGS who have been treated with CBD-enriched cannabis preparations. We conducted a brief online survey of parents who administered CBD-enriched cannabis preparations for the treatment of their children’s epilepsy. We specifically recruited parents of children with IS and LGS and focused on perceived efficacy, dosage, and tolerability. Survey respondents included 117 parents of children with epilepsy (including 53 with IS or LGS) who had administered CBD products to their children. Perceived efficacy and tolerability were similar across etiologic subgroups. Eighty-five percent of all parents reported a reduction in seizure frequency, and 14% reported complete seizure freedom. Epilepsy was characterized as highly refractory with median latency from epilepsy onset to CBD initiation of five years, during which the patient’s seizures failed to improve after a median of eight antiseizure medication trials. The median duration and the median dosage of CBD exposure were 6.8 months and 4.3mg/kg/day, respectively. Reported side effects were far less common during CBD exposure, with the exception of increased appetite (30%). A high proportion of respondents reported improvement in sleep (53%), alertness (71%), and mood (63%) during CBD therapy. Although this study suggests a potential role for CBD in the treatment of refractory childhood epilepsy including IS and LGS, it does not represent compelling evidence of efficacy or safety. From a methodological standpoint, this study is extraordinarily vulnerable to participation bias and limited by lack of blinded outcome ascertainment. Appropriately controlled clinical trials are essential to establish efficacy and safety.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pubmed/25935511


 

Title: Slim Evidence for Cannabinoids for Epilepsy (2013) (Note: Conflict of interest with Sunovian and Pfizer, old studies cited using ineffective amounts of CBD, according to the actual studies.)

Abstract: Commentary by John W. Miller, MD, PhD Cannabinoids for Epilepsy.

Gloss D, Vickrey B. Cochrane Database of Systematic Reviews. 2012; Issue 6. Art. No.: CD009270. doi: 10.1002/14651858.CD009270.pub.2.

BACKGROUND: Marijuana appears to have anti-epileptic effects in animals. It is not currently known if it is effective in patients with epilepsy. Some states in the United States of America have explicitly approved its use for epilepsy. OBJECTIVES: To assess the efficacy of marijuana, or one of marijuana’s constituents in the treatment of people with epilepsy. SEARCH METHODS: We searched the Cochrane Epilepsy Group Specialized Register (May 15, 2012), the Cochrane Central Register of Controlled Trials (CENTRAL issue 4 of 12, The Cochrane Library 2012),MEDLINE (PubMed, searched on May 15, 2012), ISI Web of Knowledge

(May 15, 2012), CINAHL (EBSCOhost, May 15, 2012), and ClinicalTrials.gov (May 15, 2012). In addition, we included studies we personally knew about that were not found by the searches, as well as references in the identified studies. SELECTION CRITERIA: Randomized controlled trials (RCTs), whether blinded or not. DATA COLLECTION AND ANALYSIS: Two authors independently selected trials for inclusion and extracted data. The primary outcome investigated was seizurefreedom at one year or more, or three times the longest interseizure interval. Secondary outcomes included: responder rate at six months or more, objective quality of life data, and adverse events. MAIN RESULTS: We found four randomized reports which included a total of 48 patients, each of which used cannabidiol as the treatment agent. One report was an abstract, and another was a letter to the editor. Anti-epileptic drugs were continued in all. Details of randomisation were not included in any study. There was no investigation of whether control and treatment groups were the same or different. All the reports were low quality. The four reports only answered the secondary outcome about adverse effects. None of the patients in the treatment groups suffered adverse effects. AUTHORS’ CONCLUSIONS: No reliable conclusions can be drawn at present regarding the efficacy of cannabinoids as a treatment for epilepsy. The dose of 200 to 300 mg daily of cannabidiol was safely administered to small numbers of patients, for generally short periods of time, and so the safety of long term cannabidiol treatment cannot be reliably assessed.

Source / Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639568/

Also see a more complete review of Cannabis in Epilepsyhttp://www.medicinalgenomics.com/wp-content/uploads/2013/11/Cochrane-Review-CBD-Epilepsy.pdf


Random list of non-verified patient testimonials:
http://www.ukcia.org/medical/epilepsy.php

 

 

 


 

Disclaimer

The information available on this website is posted for informational purposes only. Links to other Internet sites are included as a convenience.  The Hawai‘i Cannabis Organization is not responsible for and assumes no liability for its content. The Hawai‘i Cannabis Organization does not review the website and does not make any representation as to the accuracy of the content.
Content on this website is intended to be used and must be used for informational purposes only. It is very important to do your own analysis before making any investment based on your own personal circumstances. You should take independent financial advice from a professional in connection with, or independently research and verify, any information that you find on our Website and wish to rely upon, whether for the purpose of making an investment decision or otherwise.
Research on this page is incomplete. Trends in the rise of the popularity of medical marijuana correlate with positive research outcomes eg; the newer the research the more positive it seems for epilepsy patients.

One Response