BACKGROUND:

Meehl regarded schizotypy as a categorial liability for schizophrenia that is the product of genes, environment, and gene-environment interactions. We sought to test whether schizophrenia-related genotypes and environmental risk factors predict membership in classes defined by taxometric analyses of positive (cognitive-perceptual), negative (interpersonal), and disorganized schizotypy.

METHODS:

Participants (n = 500) completed the Schizotypal Personality Questionnaire (SPQ) and provided information on the following risk factors: cannabis use, pregnancy and obstetric complications, social adjustment, and family history of psychosis. Saliva samples were obtained so that the frequency of single-nucleotide polymorphism (SNP) alleles associated with risk for developing schizophrenia could be determined. Genotyped SNPs were rs1625579 (MIR137), rs7004633 (MMP16), rs7914558 (CNNM2), and rs12966547 (CCDC68). Sets of SPQ items were subject to multiple coherent cut kinetic (CCK) analyses, including mean-above-minus-below-a-cut, maximum covariance, maximum eigenvalue, and latent modes analyses.

RESULTS:

CCK analyses indicated latent taxonicity of schizotypy across the 3 item sets. The cognitive-perceptual class had a base rate of 25%, and membership was predicted by the rs7004633 SNP (odds ratio = 2.33, 95% confidence interval = 1.15-4.72 in adjusted analyses). Poor social adjustment predicted memberships in the interpersonal (16%) and disorganized (21%) classes. Classes were found not to be mutually exclusive.

CONCLUSIONS:

Schizotypy is taxonic and schizotypy class membership is predicted by genetic and environmental factors that predict schizophrenia. The findings hold the promise that a more complete understanding of schizotypy as a schizophrenia liability state will come from investigation of other genes and environmental factors associated with schizophrenia.

© The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@nulloup.com.